Bayesian Emulation for Multi-Step Optimization in Decision Problems
نویسندگان
چکیده
منابع مشابه
Multi-Step Bayesian Optimization for One-Dimensional Feasibility Determination
Bayesian optimization methods allocate limited sampling budgets to maximize expensive-to-evaluate functions. One-step-lookahead policies are often used, but computing optimal multi-step-lookahead policies remains a challenge. We consider a specialized Bayesian optimization problem: finding the superlevel set of an expensive one-dimensional function, with a Markov process prior. We compute the B...
متن کاملModeling multi-stage decision optimization problems
Multi-stage optimization under uncertainty techniques can be used to solve long-term management problems. Although many optimization modeling language extensions as well as computational environments have been proposed, the acceptance of this technique is generally low, due to the inherent complexity of the modeling and solution process. In this paper a simplification to annotate multi-stage de...
متن کاملA FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING PROBLEMS
The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle ...
متن کاملMulti-Objective Optimization for Multi-Product Multi-Period Four Echelon Supply Chain Problems Under Uncertainty
The multi-objective optimization for a multi-product multi-period four-echelon supply chain network consisting of manufacturing plants, distribution centers (DCs) and retailers each with uncertain services and uncertain customer nodes are aimed in this paper. The two objectives are minimization of the total supply chain cost and maximization of the average number of products dispatched to custo...
متن کاملBayesian Optimization Algorithms for Multi-objective Optimization
In recent years, several researchers have concentrated on using probabilistic models in evolutionary algorithms. These Estimation Distribution Algorithms (EDA) incorporate methods for automated learning of correlations between variables of the encoded solutions. The process of sampling new individuals from a probabilistic model respects these mutual dependencies such that disruption of importan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2019
ISSN: 1936-0975
DOI: 10.1214/18-ba1105